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Abstnrcl - Finite-Difference TlmcDomain (FDTD) 
Analysis is a very popular method for solvtng 
ekctromaguetic problems. The nlgorithm is computationally 
intensive and sbu”latio”s es” take several days to run on 
hnditiousl, mukipmcessor supercomputer platforms. 
Reducing the runttme of these simulations, by a” order of 
maguitude or more, would greatly increase the productivity 
of FWfD users and open new avenues of research. 

A hardware implementation of a one-dimenslooal FDTD 
computattoual cell is presented, with the goal of accelerating 
tbree-dimensionsl computations by a factor of 10-100 times. 
A free-space, cavity resonator is used to successfully vertfy 
the FDTD simutatton on hardware. Computational speed is 
very promising sod is independent of the “umber of cells in 
the simulation. Larger stmulstions require uwrv hardware. A 
typical sbuulation size (100r10Ox100) is hardware 
pmbibtttve, so future work will investigate hardware sbnriog 
methods. 

I. 1NrR0DUcr10N 

The Finite-Difference Time-Domain (FDTD) [l] has 
been successfully and very widely applied to the solution 
of complex electromagnetic problems [Z]. The algorithm 
is compututionally intensive and involves a three- 
dimensional simulation volume of upwards of millions of 
computational cells at a time. The past decade has seen a 
large increase in computational rescmrce~ at declining 
costs, but simulations can still run for several days on 
multiprocessor supercomputers. Decreasing the rnn time 
of this algorithm would greatly benefit FDTD users and 
open up new areas of research. 

The objective of this research is to accelerate the 
computation of the FDTD algorithm by a factor of IO-100 
times, by using custom, dedicated hardware, integer 
arithmetic and fme-gmined parallelism. The long-term 
goal is to integrate this level of acceleration into existing 
FDTD sotlware platforms. 

This research is novel for a number of reasons. First, 
initial projections indicate that the FDTD algorithm could 
be successfully accelerated by an order of magnitude or 

more. Second, calculations are performed on custom, 
field-programmable gate-amay (FPGA) based hardware. 
Hardware based acceleration was previously attempted by 
Marek et al [3]. They presented a simulated, hardware 
description language (HDL) co-processor in a Sparc2 
system, with a predicted acceleration on the order of five 
to nine times. Third, hardware computations are 
performed using integer arithmetic. Nearly all published 
implementations of FDTD use floating-point calculations, 
except Grinin [4], where integer FDTD code is used to 
avoid the expense of flouting point calculations on a 16- 
bit integer-optimized processor. 

A. Benchmark 

A three-dimensional simulation volume is spatially 
sampleil such that there are at least IO-20 samples per 
wavelength at the highest frequency of interest. The 
simulation is run for three to four periods at the lowest 
frequency of interest, which typically equates to 10,000 
time steps. Thus, a typical simulation would have the 
following properties. 

Table I: Typical Simulation Run-Time 

An assumption is made that a floating-point addition or 
multiplication takes one flop (floating-point operation). 
This calculation yields an overly optimistic runtime. It 
ignores variable memory uccess speed (cache misses, hard 
drive paging), operating system overhead, time-sharing 
and muny other problems that exist in traditional computer 
systems. Finally, it focuses only on the core update 
equations which update the magnetic and electric fields in 
three-dimensions for each time step. More advanced 
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FDTD code would perform additional calculations for 
sub-cellular stmchues, complex media and absorbing 
boundary conditions. Accurate absorbing boundary 
conditions can add as many as eight layers to the 
boundaries of the simulation region, which increases the 
computational requirements by as much as 70%. 

II. It.PLEhENTATtON 

For simplicity, a one-dimensional FDTD cell is 
discussed. Both one and two-dimensional cases are 
implemented and verified. Results are also extrapolated to 
a three-dimensional case. It should be noted that a three- 
dimensional hardware solution has not been implemented 
at this time. This is discussed in detail in later sections. 

A. Induc:or-Capacitor Representaiion of FDTD ’ 

Gwarek [5] provides a representation of the two- 
dimensional FDTD algorithm in terms of inductors and 
capacitors. The electric and magnetic fields are 
represented by voltage in the capacitors and current in the 
inductors, respectively. This relationship is further 
demonstrated in Figure 1. 

Figure 1: Two-Dimensional FDTD Grid and Inductor-Capacitor 
Equi”ale”t 

The inductor-capacitor stmchue is very similar to the 
digital ladder filter stmchue introduced by Baton [a]. 
Thus, traditional digital filter implementation techniques 
can be used to implement an FDTD calculation using 
digital hardware. 

B. One-Dimensional FDTD Cell 

Using GWWZk’S work, the one-dimensional 
representation is just a special case of Figure 1 and is 
further depicted in Figure 2. 
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Figure 2: (a) One-Dimensional Inductor-Capacitor FDTD 
Equivalent (b) Signal Flow Graph. The ‘l/s’ denotes 
Laplacian integration. Voltages are represented by the 
signals at the top of the signal flow graph, while 
currents am represented on the bottom. 

Following B&on’s work [6], each integrator in Figure 
2 is replaced by a ‘lossless discrete integrator’ (LDI) of 
the form: 

Figure 3: Lossless Discrete Integrator (LDI) 

These integrators effectively implement a centered- 
difference (trapezoidal) integration algorithm. There is a 
direct correlation between the traditional FDTD update 
equations and the analytical evaluation of this inductor- 
capacitor nehvork using LDI’s. 

Finally, following Btuton’s work [6] again, the delays 
are rearranged to give the following signal flow graph: 
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Figure 4: Signal Flow Graph of a One-Dimensional FDTD Cell 

Pipelined, bit-serial arithmetic was chosen in order to 
implement the signal flow graph of Figure 4. Bit-parallel 
arithmetic is the most common and familiar method for 
performing digital computations. In this case, all resultant 
bits of an operator are computed at once, in parallel. This 
method typically represents the fastest computation 
method and requires the most hardware. Bit-serial is at the 
opposite end of the spectrum. In this case, the result of an 
operator is computed one bit at a time. For a more detailed 
discussion of these concepts, the reader is referred to [7]. 

Pipelined bit-serial arithmetic was chosen for the 
following reasons. As discussed, the hardware cost of 
pipelined, hit-serial arithmetic units is low. Computational 
units are reused for each bit of system wordlength bits. 
Many computational units could be implemented in 
parallel for a fixed amount of hardware, because of their 
small size. The pipelined, serial nature allows for very 
short routing lengths, reducing hardware muting costs and 
simplifying the routing process. 

Integer arithmetic was chosen in an attempt to reduce 
the hardware cost and increase the computational speed of 
the implementation. These gains arc offset by the need for 
larger integer registers to represent the equivalent floating 
point capacity of traditional FDTD implementations. More 
research is necessary into the required (bit-wise) accuracy 
of coefficients, field values and the resulting stability and 
accuracy of the FDTD algorithm. 

The atomic units of the bit-serial computational 
sttwture are: adders, subtractors, multipliers, shifters 
(multiply/divide by 2) and delays. A more complicated 
control structure is required to frame the system 
wordlength (SWL) groups of bits as they traverse the bit- 
serial stntcture. The signal flow graph in Figure 4 is 

converted into fixed-precision, integer computations on 
hardware using these pipelined-bit serial building blocks. 
The SWL was chosen to be 32-bits with 1Zbit multiplier 
coefficients. Full details of the bit-serial hardware 
implementation are given in a paper the authors have 
written for the FPGA community [S]. 

D. Fixed hcision Implications 

By kxperiment, using S-bit coefftcients to represent the 
TIC OT T/I. multiplier values, it was found that the 
resulting simulation was not bounded-input, bounded- 
output (BIBO) stable. Increasing the coefficient precision 
to 12.bits provides stability. It is possible that the value of 
At, the time sample interval, could be adjusted such that 
the coeff5zients are as close to * convenient integer 
representation as possible. Once a final implementation 
has been selected, more research is required in this area. 

E. One-Dimensional Resonator 

A one-dimensional, free-space cavity resonator, ten 
FDTD cells in length and terminated in perfect electric 
conductors was implemented. A resonator represents a 
trivial example, but it is very us&l for verification of the 
algorithmic implementation. Errors in the calculations 
quickly accumulate and the output becomes unbounded. 
Resonant frequencies are several orders of magnitude 
above the noise floor and narrowband. The coefficients 
directly relate to the location of these frequencies, further 
verifying the multiplier shucture. 

The excitation is a short, time-domain impulse, intended 
to excite all frequencies within the resonator. The impulse 
is realized by biasing one of the capacitors with a non- 
zem value at the start of the simulation. CoeffZents wrre 
chosen such that Ax = 1.0 cm and pr = or = 1.0 (converted 
to the inductor and capacitor values, respectively). Using 
10 cells, this represents a resonator IO cm in length. 

III. RESULTS 

The target hardware device is the Xilinx Virtex Family 
FPGA, XCV300, and it offers 3,072 slices. A ‘slice’ is a 
measure of an atomic unit of hardware resources on an 
FPGA. Most importantly, Xilinx Vittex slices contain two 
flip-flops and two 4-input lookup tables. 

A. Simulation Results 

The hardware FDTD computation, in one-dimension, 
successfully predicts fundamental and second harmonic 
resonant frequencies to within 0.65% and 1% of 
theoretical values. Similarly, a hvo-dimensional resonant 
structure predicts the first resonant frequency to within 
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1%. These predictions are identical to the results produced 
by an Intel-Linus computer running a traditional, C++, 
floating-point FDTD simulation. 

B. Computation Speed and Hardware Requiremenfs 

The maximum operating frequency, for the one- 
dimensional case and reported by the Xilinx FPGA CAD 
tools, is 37.7’MH.z. For a 32-bit SWL implemented in 
pipelined, bit-serial arithmetic, a new result is computed 
every 849 ns (t&ion = 1.18 MHz). Assuming that the 
observation data could be output from the FPGA at this 
rate, 10,000 time steps could be computed in 8.49 
milliseconds. A one-dimensional FDTD computational 
cell occupies 86.5 Xilinx Virtex slices. The 10 cell 
resonator used 30% of the device or 917 slices. 52 slices 
are used for data collection leaving 865 slices for the 
FDTD cells and control sbucture. 

Each two-dimensional FDTD cell requires 120 Vi&x 
slices. Operating at a serial clock of 32 MHz and 40-bit 
SWL, new results are available every 1.25 microseconds 
(fq = 0.8 MHz, 10,000 iterations = 12.5 milliseconds). 

We can use this information to further predict the cost 
of three-dimensional computational cells. The one- 
dimensional case represents two fields. The two- 
dimensional cell representing three fields requires 120 
slices, with the addition of two subtractors to combine 
additional fields into sane calculations. Finally, it is 
predicted that the three-dimensional computational cell 
would require 265 slices to represent six fields. 

IV. Drscussio~ 

The one-dimensional FDTD algorithm has been 
successfully implemented in hardware. The computation 
speed is extremely fast and not related to the number of 
cells. This approach represents maximum possible 
parallelism because every computational cell of the 
simulation is implemented cm hardware. A larger 
simulation, with more cells, would require more hardware. 

Simple calculations show that a typical three- 
dimensional simulation (100x100x100 = 1 million cells) 
would be too large to tit on a single hardware device. The 
largest part currently released by Xilbax offers 61,440 
slices. Thus, it would take 4,313 of these devices to 
implement the entire simulation, at once, on hardware. 
.From another perspective, the largest parts represent 10 
million gate equivalents. With one million cells, there are 
10 logic gate equivalents available per three-dimensional 
FDTD cell, per FPGA. This is clearly not enough to 

perform a useful volume computation. However, using 
this method, significant acceleration can be applied to one 
and two-dimensional analyses like transmission lines, 
waveguides and symmehical simplifications of three- 
dimensional problems. 

In order to achieve useful acceleration of the FDTD 
algorithm, other avenues are now being explored. A 
10x10x10 FDTD cube could tit on five of the largest 
FPGA parts. We are now investigaiing methods for 
reusing a smaller computational engine to compute larger 
stNctll~es. 
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