
WE2F-2

Custom Hardware Implementation of the Finite-Difference
Time-Domain (FDTD) Method

Ryan N. Schneider, IEEE Student Member, Michal M. Okonieivski, IEEE Senior Member,
Laurence E. Turner, IEEE Member

University of Calgary, Electrical and Computer Engineering, 2500 University Drive NW,
Calgary, Alberta, T2N lN4, CANADA

Abstnrcl - Finite-Difference TlmcDomain (FDTD)
Analysis is a very popular method for solvtng
ekctromaguetic problems. The nlgorithm is computationally
intensive and sbu”latio”s es” take several days to run on
hnditiousl, mukipmcessor supercomputer platforms.
Reducing the runttme of these simulations, by a” order of
maguitude or more, would greatly increase the productivity
of FWfD users and open new avenues of research.

A hardware implementation of a one-dimenslooal FDTD
computattoual cell is presented, with the goal of accelerating
tbree-dimensionsl computations by a factor of 10-100 times.
A free-space, cavity resonator is used to successfully vertfy
the FDTD simutatton on hardware. Computational speed is
very promising sod is independent of the “umber of cells in
the simulation. Larger stmulstions require uwrv hardware. A
typical sbuulation size (100r10Ox100) is hardware
pmbibtttve, so future work will investigate hardware sbnriog
methods.

I. 1NrR0DUcr10N

The Finite-Difference Time-Domain (FDTD) [l] has
been successfully and very widely applied to the solution
of complex electromagnetic problems [Z]. The algorithm
is compututionally intensive and involves a three-
dimensional simulation volume of upwards of millions of
computational cells at a time. The past decade has seen a
large increase in computational rescmrce~ at declining
costs, but simulations can still run for several days on
multiprocessor supercomputers. Decreasing the rnn time
of this algorithm would greatly benefit FDTD users and
open up new areas of research.

The objective of this research is to accelerate the
computation of the FDTD algorithm by a factor of IO-100
times, by using custom, dedicated hardware, integer
arithmetic and fme-gmined parallelism. The long-term
goal is to integrate this level of acceleration into existing
FDTD sotlware platforms.

This research is novel for a number of reasons. First,
initial projections indicate that the FDTD algorithm could
be successfully accelerated by an order of magnitude or

more. Second, calculations are performed on custom,
field-programmable gate-amay (FPGA) based hardware.
Hardware based acceleration was previously attempted by
Marek et al [3]. They presented a simulated, hardware
description language (HDL) co-processor in a Sparc2
system, with a predicted acceleration on the order of five
to nine times. Third, hardware computations are
performed using integer arithmetic. Nearly all published
implementations of FDTD use floating-point calculations,
except Grinin [4], where integer FDTD code is used to
avoid the expense of flouting point calculations on a 16-
bit integer-optimized processor.

A. Benchmark

A three-dimensional simulation volume is spatially
sampleil such that there are at least IO-20 samples per
wavelength at the highest frequency of interest. The
simulation is run for three to four periods at the lowest
frequency of interest, which typically equates to 10,000
time steps. Thus, a typical simulation would have the
following properties.

Table I: Typical Simulation Run-Time

An assumption is made that a floating-point addition or
multiplication takes one flop (floating-point operation).
This calculation yields an overly optimistic runtime. It
ignores variable memory uccess speed (cache misses, hard
drive paging), operating system overhead, time-sharing
and muny other problems that exist in traditional computer
systems. Finally, it focuses only on the core update
equations which update the magnetic and electric fields in
three-dimensions for each time step. More advanced

875

0-7803.7239-S/02/$10.00 0 2002 IEEE 2002 I!33 M’ITS Digest

FDTD code would perform additional calculations for
sub-cellular stmchues, complex media and absorbing
boundary conditions. Accurate absorbing boundary
conditions can add as many as eight layers to the
boundaries of the simulation region, which increases the
computational requirements by as much as 70%.

II. It.PLEhENTATtON

For simplicity, a one-dimensional FDTD cell is
discussed. Both one and two-dimensional cases are
implemented and verified. Results are also extrapolated to
a three-dimensional case. It should be noted that a three-
dimensional hardware solution has not been implemented
at this time. This is discussed in detail in later sections.

A. Induc:or-Capacitor Representaiion of FDTD ’

Gwarek [5] provides a representation of the two-
dimensional FDTD algorithm in terms of inductors and
capacitors. The electric and magnetic fields are
represented by voltage in the capacitors and current in the
inductors, respectively. This relationship is further
demonstrated in Figure 1.

Figure 1: Two-Dimensional FDTD Grid and Inductor-Capacitor
Equi”ale”t

The inductor-capacitor stmchue is very similar to the
digital ladder filter stmchue introduced by Baton [a].
Thus, traditional digital filter implementation techniques
can be used to implement an FDTD calculation using
digital hardware.

B. One-Dimensional FDTD Cell

Using GWWZk’S work, the one-dimensional
representation is just a special case of Figure 1 and is
further depicted in Figure 2.

a

1
T

l

‘L L
I-
capacitor inductor

@I

Figure 2: (a) One-Dimensional Inductor-Capacitor FDTD
Equivalent (b) Signal Flow Graph. The ‘l/s’ denotes
Laplacian integration. Voltages are represented by the
signals at the top of the signal flow graph, while
currents am represented on the bottom.

Following B&on’s work [6], each integrator in Figure
2 is replaced by a ‘lossless discrete integrator’ (LDI) of
the form:

Figure 3: Lossless Discrete Integrator (LDI)

These integrators effectively implement a centered-
difference (trapezoidal) integration algorithm. There is a
direct correlation between the traditional FDTD update
equations and the analytical evaluation of this inductor-
capacitor nehvork using LDI’s.

Finally, following Btuton’s work [6] again, the delays
are rearranged to give the following signal flow graph:

876

c I
4 ‘,I .

--
capacitor inductor

Figure 4: Signal Flow Graph of a One-Dimensional FDTD Cell

Pipelined, bit-serial arithmetic was chosen in order to
implement the signal flow graph of Figure 4. Bit-parallel
arithmetic is the most common and familiar method for
performing digital computations. In this case, all resultant
bits of an operator are computed at once, in parallel. This
method typically represents the fastest computation
method and requires the most hardware. Bit-serial is at the
opposite end of the spectrum. In this case, the result of an
operator is computed one bit at a time. For a more detailed
discussion of these concepts, the reader is referred to [7].

Pipelined bit-serial arithmetic was chosen for the
following reasons. As discussed, the hardware cost of
pipelined, hit-serial arithmetic units is low. Computational
units are reused for each bit of system wordlength bits.
Many computational units could be implemented in
parallel for a fixed amount of hardware, because of their
small size. The pipelined, serial nature allows for very
short routing lengths, reducing hardware muting costs and
simplifying the routing process.

Integer arithmetic was chosen in an attempt to reduce
the hardware cost and increase the computational speed of
the implementation. These gains arc offset by the need for
larger integer registers to represent the equivalent floating
point capacity of traditional FDTD implementations. More
research is necessary into the required (bit-wise) accuracy
of coefficients, field values and the resulting stability and
accuracy of the FDTD algorithm.

The atomic units of the bit-serial computational
sttwture are: adders, subtractors, multipliers, shifters
(multiply/divide by 2) and delays. A more complicated
control structure is required to frame the system
wordlength (SWL) groups of bits as they traverse the bit-
serial stntcture. The signal flow graph in Figure 4 is

converted into fixed-precision, integer computations on
hardware using these pipelined-bit serial building blocks.
The SWL was chosen to be 32-bits with 1Zbit multiplier
coefficients. Full details of the bit-serial hardware
implementation are given in a paper the authors have
written for the FPGA community [S].

D. Fixed hcision Implications

By kxperiment, using S-bit coefftcients to represent the
TIC OT T/I. multiplier values, it was found that the
resulting simulation was not bounded-input, bounded-
output (BIBO) stable. Increasing the coefficient precision
to 12.bits provides stability. It is possible that the value of
At, the time sample interval, could be adjusted such that
the coeff5zients are as close to * convenient integer
representation as possible. Once a final implementation
has been selected, more research is required in this area.

E. One-Dimensional Resonator

A one-dimensional, free-space cavity resonator, ten
FDTD cells in length and terminated in perfect electric
conductors was implemented. A resonator represents a
trivial example, but it is very us&l for verification of the
algorithmic implementation. Errors in the calculations
quickly accumulate and the output becomes unbounded.
Resonant frequencies are several orders of magnitude
above the noise floor and narrowband. The coefficients
directly relate to the location of these frequencies, further
verifying the multiplier shucture.

The excitation is a short, time-domain impulse, intended
to excite all frequencies within the resonator. The impulse
is realized by biasing one of the capacitors with a non-
zem value at the start of the simulation. CoeffZents wrre
chosen such that Ax = 1.0 cm and pr = or = 1.0 (converted
to the inductor and capacitor values, respectively). Using
10 cells, this represents a resonator IO cm in length.

III. RESULTS

The target hardware device is the Xilinx Virtex Family
FPGA, XCV300, and it offers 3,072 slices. A ‘slice’ is a
measure of an atomic unit of hardware resources on an
FPGA. Most importantly, Xilinx Vittex slices contain two
flip-flops and two 4-input lookup tables.

A. Simulation Results

The hardware FDTD computation, in one-dimension,
successfully predicts fundamental and second harmonic
resonant frequencies to within 0.65% and 1% of
theoretical values. Similarly, a hvo-dimensional resonant
structure predicts the first resonant frequency to within

871

1%. These predictions are identical to the results produced
by an Intel-Linus computer running a traditional, C++,
floating-point FDTD simulation.

B. Computation Speed and Hardware Requiremenfs

The maximum operating frequency, for the one-
dimensional case and reported by the Xilinx FPGA CAD
tools, is 37.7’MH.z. For a 32-bit SWL implemented in
pipelined, bit-serial arithmetic, a new result is computed
every 849 ns (t&ion = 1.18 MHz). Assuming that the
observation data could be output from the FPGA at this
rate, 10,000 time steps could be computed in 8.49
milliseconds. A one-dimensional FDTD computational
cell occupies 86.5 Xilinx Virtex slices. The 10 cell
resonator used 30% of the device or 917 slices. 52 slices
are used for data collection leaving 865 slices for the
FDTD cells and control sbucture.

Each two-dimensional FDTD cell requires 120 Vi&x
slices. Operating at a serial clock of 32 MHz and 40-bit
SWL, new results are available every 1.25 microseconds
(fq = 0.8 MHz, 10,000 iterations = 12.5 milliseconds).

We can use this information to further predict the cost
of three-dimensional computational cells. The one-
dimensional case represents two fields. The two-
dimensional cell representing three fields requires 120
slices, with the addition of two subtractors to combine
additional fields into sane calculations. Finally, it is
predicted that the three-dimensional computational cell
would require 265 slices to represent six fields.

IV. Drscussio~

The one-dimensional FDTD algorithm has been
successfully implemented in hardware. The computation
speed is extremely fast and not related to the number of
cells. This approach represents maximum possible
parallelism because every computational cell of the
simulation is implemented cm hardware. A larger
simulation, with more cells, would require more hardware.

Simple calculations show that a typical three-
dimensional simulation (100x100x100 = 1 million cells)
would be too large to tit on a single hardware device. The
largest part currently released by Xilbax offers 61,440
slices. Thus, it would take 4,313 of these devices to
implement the entire simulation, at once, on hardware.
.From another perspective, the largest parts represent 10
million gate equivalents. With one million cells, there are
10 logic gate equivalents available per three-dimensional
FDTD cell, per FPGA. This is clearly not enough to

perform a useful volume computation. However, using
this method, significant acceleration can be applied to one
and two-dimensional analyses like transmission lines,
waveguides and symmehical simplifications of three-
dimensional problems.

In order to achieve useful acceleration of the FDTD
algorithm, other avenues are now being explored. A
10x10x10 FDTD cube could tit on five of the largest
FPGA parts. We are now investigaiing methods for
reusing a smaller computational engine to compute larger
stNctll~es.

ACKNOWLEDGEMENTS

The authors would like to acknowledge pa&al support
of this research by the National Science and Engineering
Research Council (NSERC) of Canada.

[II

PI

[31

(41

bl

WI

[71

PI

REFERENCES

Yee, KS., “‘Numerical Solution of initial bamdary value
problems solving Maxwell’s equations in isotropic media,”
IEEE Tram. Antenmz and Propagation, Vol. 14, 1966,
p~.302-307
T.dlCW, Allen. Advances in Computational
Electrodynamics - The Finite Difference Time Domain
Method. Norwad, MA: Artecb House Inc., 1998.
Mar&, I.R, Mehalic, M.A. and Tazuoli, A.J. “A
Dedicated VLSI Architecture for Finite-Difference Time
Domain Calculations*’ 8th Annual Review of Progress in
Applied Computational Electromagnetics, Monterey, CA,
vol. 1, pp. 546.553, March, 1992.
Chinin, S-V.. “Integer-Arithmetic FDTD Codes for
Computer Simulation of Internal, Near and Far
Electromagnetic Fields Scattered by Three-Dimensional
Conductive Complicated Form Bodies”, Computer Physics
Communications, vol. 102, no. l--3, pp.lG9-131, May,
1997.
Gwarek, W.K.. ‘Analysis of Arbitrarily Shaped Two-
Dimensional Microwave Circuits by Finite-Difference
Time-Domain Method,” IEEE Trans. Microwave Theory
and Techniques, vol. 36, no. 4, pp.738-744.
Baton, L.T.. ‘Low sensitivity digital ladder filters,” IEEE.
Trans. Circuits Sysf... vol CAS-22, pp.168-176, March
1975.
Hartley, R.I. and Parhi, K.K. Digit-Serial Computation.
Norwell, Massachusetts: Khwer Academic Publishers,
1995.
Schneider, R. N., Turner, L. E., and Okoniewski, M. M.
‘Application of FPGA Technology to Accelerate the Finite-
Difference Time-Domain (FDTD) Method”, Tenth
International Symposium on Field Programmable Gate
Arrays, February 24-26,2002, Monterey, CA.

878

	MTT024
	Return to Contents

