WE2F-2

Custom Hardware Implementation of the Finite-Difference
Time-Domain (FDTD) Method

Ryan N. Schneider, [EEE Student Member, Michal M. Okoniewski, IEEE Senior Memlber,
Laurence E. Turer, IEEE Member

University of Calgary, Electrical and Computer Engineering, 2500 University Drive NW,
Calgary, Alberta, T2N 1N4, CANADA

Abstract — Finite-Difference Time-Domain (FDTD)
Analysis is a very popular method for solving
electromagnetic problems. The algorithm is computationally
intensive and simulations can take several days to run on
traditional, multiprocessor supercomputer platforms.
Reducing the runtime of these simulations, by an order of
magnitude or more, would greatly increase the productivity
of FDTD users and open new avenues of research.

A hardware implementation of a one-dimensional FDTD
computational cell is presented, with the goal of accelerating
three-dimensional computations by a factor of 10-100 times.
A free-space, cavity resonator is used to successfully verify
the FDTD simutation on hardware. Computational speed is
very promising and is independent of the number of cells in
the simulation. Larger simulations reguire more hardware. A
typical simulation size (100x100x100) is hardware
prohibitive, so future work will investigate hardware sharing
methods. '

I. INTRODUCTION

The Finite-Difference Time-Domain (FDTD) [1] has
been successfully and very widely applied to the solution
of complex electromagnetic probiems [2]. The algorithm
is computationally intensive and involves a three-
dimensional simulation volume of upwards of millions of
computational cells at a time. The past decade has seen a
large increase in computational resources at declining
costs, but simulations can still run for several days on
multiprocessor supercomputers. Decreasing the run time
of this algorithm would greatly benefit FDTD users and
open up new areas of research.

The objective of this research is to accelerate the
computation of the FDTD algorithm by a factor of 10-100
times, by using custom, dedicated hardware, integer
arithmetic and fine-grained parallelism. The "long-term
goal is to integrate this level of acceleration into existing
FDTD software platforms.

This research is novel for a number of reasons. First,
initial projections indicate that the FDTD algorithm could
be successfully accelerated by an order of magnitude or

0-7803-7239-5/02/$10.00 © 2002 IEEE

more. Second, calculations are performed con custom,
field-programmable pate-array (FPGA) based hardware.
Hardware based acceleration was previously attempted by
Marek et al [3]. They presented a simulated, hardware
description language (HDL) co-processor in a Sparc2
system, with a predicted acceleration on the order of five
to nine times, Third, hardware computations are
performed using integer arithmetic. Nearly all published
implementations of FDTD use floating-point calculations,
except Grinin [4], where integer FDTD code is used to
avoid the expense of floating peint calculations on a 16-
bit integer-optimized processor.

A. Benchmark

A three-dimensional simulation volume is spatially
sampled such that there are at least 10-20 samples per
wavelength at the highest frequency of interest. The
simulation is run for three to four periods at the lowest
frequency of interest, which typically equates to 10,000
time steps. Thus, a typical simulation would have the
following properties.

Table 1: Typical Simulation Run-Time

Typical 100x100x 100 cells 1.00.E+06 cells
Simulation Size ¢ fields per cell 6.00.E+06 fields
Typical 10,000 iterations 6.00.E+i10 updates
Simulation 8 flops per update 4.80,E+11 flops
Length equation
Estimated run- | Gigaflops per second 480 seconds

time processor (single CPU)

An assumption is made that a floating-point addition or
multiplication takes one flop (floating-point operation).
This calculation yields an overly optimistic runtime. It
ignores variable memory access speed (cache misses, hard
drive paging), operating system overhead, time-sharing
and many other problems that exist in traditional computer
systems. Finally, it focuses only on the ccre update
equations which update the magnetic and electric fields in
three-dimensions for each time step. More advanced

875
2002 IEEE MTT-S Digest

FDTD code would perform additional calculations for
sub-cellular structures, complex media and absorbing
boundary conditions. Accurate absorbing boundary
conditions can add as many as eight layers to the
boundaries of the simulation region, which increases the
computational requirements by as much as 70%.

I1. IMPLEMENTATION

~ For simplicity, a one-dimensiona! FDTD cell is
discussed. Both one and two-dimensional cases are
implemented and verified. Results are also extrapolated to
a three-dimensional case. It should be noted that a three-
dimensional hardware soluticn has not been implemented
at this time. This is discussed in detail in later sections.

A. Inductor-Capacitor Representation of FDTD

Gwarek [5] provides a representation of the two-
dimensional FDTD algorithm in terms of inductors and
capacitors. The electric and magnetic fields are
represented by voltage in the capacitors and current in the

inductors, respectively. This relationship is further
demonstrated in Figure 1.
—— e e
[< 7« 1
\)\ - -
" L [
SR .

Figure 1: Two-Dimensional FDTD Grid and Inductor-Capacitor
Equivalent

The inductor-capacitor structure is very similar to the
digital ladder filter structure introduced by Bruton [6]).
Thus, traditional digital filter implementation techniques
can be used to implement an FDTD calculation using
digital hardware.

B. One-Dimensional FDTD Cell

Using Gwarek’s work, the one-dimensional
representation is just a special case of Figure 1 and is
further depicted in Figure 2.

capacitor inductor

(b
Figure 2: (a) One-Dimensional Inductor-Capacitor FDTD
Equivalent (b) Signal Flow Graph. The ‘1/s’ denotes
Laplacian integration. Voltages are represented by the
signals at the top of the signal flow graph, while
currents are represented on the bottom.

Following Bruton's work [6], each integrator in Figure
2 is repiaced by a ‘lossless discrete integrator’ (LDI) of
the form:

>

AR
1/

b=
L

(NI

Figure 3: Lossless Discrete Integrator (LDI)

These integrators effectively implement a cemtered-
difference (trapezoidal) integration algorithm. There is a
direct correlation between the traditional FDTD update
equations and the analytical evaluation of this inductor-
capacitor network using LDI’s.

Finally, following Bruton’s work [6] again, the delays
are re-arranged to give the following signal flow graph:

876

capacitor inductor

Figure 4: Signal Flow Graph of a One-Dimensional FDTD Cell

C. Hardware Implementation

Pipelined, bit-serial arithmetic was chosen in order to
implement the signai flow graph of Figure 4. Bit-parallel
arithmetic is the most common and familiar method for
performing digital computations. In this case, all resultant
bits of an operator are computed at once, in parallel. This
method typically represents the fastest computation
method and requires the most hardware. Bit-serial is at the
opposite end of the spectrum. In this case, the result of an
operator is computed one bit at a time, For a more detailed
discussion of these concepts, the reader is referred to [7].

Pipelined bit-serial arithmetic was chosen for the
following reasons. As discussed, the hardware cost of
pipelined, bit-serial arithmetic units is low, Computational
units are reused for each bhit of system wordlength bits.
Many computational units could be implemented in
parallel for a fixed amount of hardware, because of their
small size. The pipelined, serial nature allows for very
short routing lengths, reducing hardware routing costs and
simplifying the routing process.

Integer arithmetic was chosen in an attempt to reduce
the hardware cost and increase the computational speed of
the implementation. These gains are offset by the need for
larger integer registers to represent the equivalent floating
point capacity of traditional FDTD implementations. More
research is necessary into the required (bit-wise) accuracy
of coefficients, field values and the resulting stability and
accuracy of the FDTD algorithm.

The atomic units of the bit-serial computational
structure are: adders, subtractors, multipliers, shifters
{multiply/divide by 2) and delays. A more complicated
control structure is required to frame the system
wordlength (SWL) groups of bits as they traverse the bit-
serial structure. The signal flow graph in Figure 4 is

converted into fixed-precision, integer computations on
hardware using these pipelined-bit serial building blocks.
The SWL was chosen to be 32-bits with 12-bit multiplier
coefficients, Full details of the bit-serial hardware
implementation are given in a paper the authors have
written for the FPGA community [8].

D. Fixed Precision Implications

By experiment, using 8-bit coefficients to represent the
T/C or T/L. multiplier values, it was found that the
resulting simulation was not bounded-input, bounded-
output (BIBO) stable. Increasing the coefficient precision
to 12-bits provides stability. It is possible that the value of
At, the time sample interval, could be adjusted such that
the coefficients are as close to a convenient integer
representation as possible. Once a final implementation
has been selected, more research is required in this area.

E. One-Dimensional Resonator

A one-dimensional, free-space cavity resonator, ten
FDTD cells in length and terminated in perfect electric
conductors was implemented. A resonator represents a
trivial example, but it is very useful for verification of the
algorithmic implementation. Errors in the calculations
quickly accumulate and the output becomes unbounded.
Resonant frequencies are several orders of magnitude
above the noise floor and narrowband. The coefficients
directly relate to the location of these frequencies, further
verifying the multiplier structure.

The excitation is a short, time-domain impulse, intended
to excite all frequencies within the resonator. The impulse
is realized by biasing one of the capacitors with a non-
zero value at the start of the simulation. Coefficients were
chosen such that Ax = 1.0 ¢cm and g, = g, = 1.0 (converted
to the inductor and capacitor values, respectively). Using
10 cells, this represents a resonator 10 cm in length.

1. RESULTS

The target hardware device is the Xilinx Virtex Family
FPGA, XCV300, and it offers 3,072 slices. A ‘slice’ is a
measure of an atomic unit of hardware resources on an
FPGA. Most importantly, Xilinx Virtex slices contain two
flip-flops and two 4-input lookup tables.

A. Simulation Results

The hardware FDTD computation, in one-dimension,
successfully predicts fundamental and second harmonic
resonant frequencies to within 0.65% and 1% of
theoretical values. Similarly, a two-dimensional resonant
structure predicts the first resonant frequency to within

877

1%. These predictions are identical to the results produced
by an Intel-Linux computer running a traditional, C++,
floating-point FDTD simulation.

B. Computation Speed and Hardware Requirements

The maximum operating frequency, for the one-
dimensional case and reported by the Xilinx FPGA CAD
tools, is 37.7 MHz. For a 32-bit SWL implemented in
pipelined, bit-serial arithmetic, a new result is computed
every 849 ns (foperation = 1.18 MHz). Assuming that the
observation data could be output from the FPGA at this
rate, 10,000 time steps could be computed in 8.49
milliseconds. A one-dimensional FDTD computational
cell occupies 86.5 Xilinx Virtex slices. The 10 cell
resenator used 30% of the device or 917 slices. 52 slices
are used for data collectton leaving 865 slices for the
FDTD cells and control structure.

Each two-dimensional FDTD cell requires 120 Virtex
slices. Operating at a serial clock of 32 MHz and 40-bit
SWL, new results are available every 1.25 microseconds
(fop = 0.8 MHz, 10,000 iterations = 12.5 milliseconds).

We can use this information to further predict the cost
of three-dimensional computational cells. The one-
dimensional case represents two fields. The two-
dimensional cell representing three fields requires 120
slices, with the addition of two subtractors to combine
additional fields into some calculations. Finally, it is
predicted that the three-dimensional computational cell
would require 265 slices to represent six fields.

IV. DISCUSSION

- The one-dimensional FDTD algerithm has been
successfully implemented in hardware. The computation
speed is extremely fast and not related to the number of
cells. This approach represents maximum possible
parallelism because every computational cell of the
simulation is implemented on hardware. A larger
simulation, with more cells, would require more hardware.

Simple calculations show - that a typical three-
dimensional simuiation (100x100x100 = 1 million cells)
would be too large to fit on a single hardware device. The
largest part currently released by Xilinx offers 61,440
slices. Thus, it would take 4,313 of these devices to
implement the entire simulation, at once, on hardware.
From another perspective, the largest parts represent 10
million gate equivalents. With one million cells, there are
10 logic gate equivalents available per three-dimensional
FDTD cell, per FPGA. This is clearly not enough to

878

perform a useful volume computation. However, using -
this method, significant acceleration can be applied to one
and two-dimensional analyses like transmission lines,
waveguides and symmetrical simplifications of three-
dimensional problems,

In order to achieve useful acceleration of the FDTD
algorithm, other avenues are now being explored. A
10x10x10 FDTD cube could fit on five of the largest
FPGA parts. We are now investigaiing methods for
reusing a smaller computational engine to compute larger
structures.

ACKNOWLEDGEMENTS

The authors would like to acknowledge partial support
of this research by the National Science and Engineering
Research Council INSERC) of Canada.

REFERENCES

[1] Yee, K.S., “Numerical Solution of initial boundary value
problems solving Maxwell’s equations in isotropic media,” -
IEEE Trans. Antennas and Propagation, Vol. 14, 1966,
pp.302-307

Taftove, Allen, Advances in Computational
Electrodynamics -~ The Finite Difference Time Domain
Method. Norwood, MA: Artech House Inc., 1998.

Marek, JR., Mehalic, M.A. and Terzuoli, AJ. *“A
Dedicated VLSI Architecture for Finite-Difference Time
Domain Calculations” 8th Annual Review gf Progress in
Applied Computational Electromagnetics, Monterey, CA,
vel. 1, pp. 546-553, March, 1992,

Grinin, S.V. “Integer-Arithmetic FDTD Codes for
Computer Simulation of Internal, Near and Far
Electromagnetic Fields Scatiered by Three-Dimensional
Conductive Complicated Form Bodies”, Computer Physics
Communications, vol. 102, no. 1--3, pp.109-131, May,
1997.

Gwarek, WK.. “Analysis of Arbitrarily Shaped Two-
Dimensional Microwave Circuits by Finite-Difference
Time-Domain Method,” [EEE Trans. Microwave Theory
and Technigues, vol. 36, no. 4, pp.738-744.

Bruton, L.T.. “Low sensitivity digital ladder filters,” JEEE.
Trans. Circuits Syst, vol CAS-22, pp.168-176, March
1975,

Hartley, R.I. and Parhi, K.K.. Digit-Serial Computation.
Norwell, Massachusetts: Kluwer Academic Publishers,
1995,

Schneider, R, N., Tumner, L. E., and Okoniewski, M. M.
“Application of FPGA Technology to Accelerate the Finite-
Difference Time-Domain (FDTD) Method”, Tenth
International Symposivm on Field Programmable Gate
Arrays, February 24-26, 2002, Monterey, CA.

2

B3]

[4]

[5]

(61

(7]

8]

	MTT024
	Return to Contents

